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Can neural computing provide the 
next Moore’s Law?



Moore’s Law was based on scientific discovery 
and successive innovations

Adapted from Wikipedia



Each successive advance made more 
computing feasible

Adapted from Wikipedia



Better devices made better computers, which 
allowed engineering new devices…

Images from Wikipedia

Circa 1980



Better devices made better computers, which 
allowed engineering new devices…

Images from Wikipedia

Circa 2017



If we extrapolate capabilities out, it is not 
obvious better devices is the answer…
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What Comes Next?
Devices? or Neural Knowledge? 



Cycle of computing scaling already has begun 
to influence neuroscience



Even if Moore’s Law ends, computing will
continue to scale to be smarter

1950-2020

2010-???



The reservoir of known neuroscience untapped 
for computing inspiration is enormous

James, et al., BICA 2017



The brain has many mechanisms for adaptation; 
which are important for computing?

Current hardware 
focuses on synaptic 
plasticity, if anything



There are different algorithmic 
approaches to neural learning

 In situ adaptation
 Incorporate “new” forms of known neural 

plasticity into existing algorithms

 Ex situ adaptation
Design entirely new algorithms or algorithmic 

modules to provide cognitive learning abilities



Neurogenesis
Deep

Learning



Deep Networks are a function of 
training sets
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Deep Networks are a function of 
training sets
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Deep networks often struggle to generalize 
outside of training domain

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

 



Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions
 Particularly critical for novelty detection and 

encoding of new information
 “Young” hippocampal neurons exhibit increased 

plasticity (learn more) and are dynamic in their 
representations

 “Old” hippocampal neurons appear to have 
reduced learning and maintain their 
representations

 Cortex does not have neurogenesis (or similar 
mechanisms) in adult-hood, but does during 
development

Aimone et al., Neuron 2011



Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?
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Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?

 Neurogenesis Deep Learning Algorithm
 Stage 1: Check autoencoder reconstruction to 

ensure appropriate representations
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Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?

 Neurogenesis Deep Learning Algorithm
 Stage 1: Check autoencoder reconstruction to 

ensure appropriate representations
 Stage 2: If mismatch, add and train new neurons

 Train new nodes with novel inputs coming in 
(reduced learning for existing nodes)
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Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?

 Neurogenesis Deep Learning Algorithm
 Stage 1: Check autoencoder reconstruction to 

ensure appropriate representations
 Stage 2: If mismatch, add and train new neurons

 Train new nodes with novel inputs coming in 
(reduced learning for existing nodes)

 Intrinsically replay “imagined” training samples 
from top-level statistics to fine tune 
representations

 Stage 3: Repeat neurogenesis until 
reconstructions drop below error thresholds
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Neurogenesis algorithm effectively 
balances stability and plasticity

 



Neurogenesis algorithm effectively 
balances stability and plasticity

 



NDL applied to NIST data set 



A New View 
of the 

Hippocampus



Deep learning ≈ Cortex 
What ≈ Hippocampus?



Can a new framework for studying the 
hippocampus help inspire computing?

 Desired functions
 Learn associations between cortical modalities
 Encoding of temporal, contextual, and spatial 

information into associations
 Ability for “one-shot” learning
 Cue-based retrieval of information

 Desired properties
 Compatible with spiking representations
 Network must be stable with adaptation
 Capacity should scale nicely
 Biologically plausible in context of extensive 

hippocampus literature
 Ability to formally quantify costs and performance

 This requires a new model of CA3

Entorhinal 
Cortex

Dentate 
Gyrus

CA3

CA1



Formal model of DG provides 
lossless encoding of cortical inputs
 Constraining EC 

inputs to have 
“grid cell” structure 
sets DG size to 
biological level of 
expansion (~10:1)

 Mixed code of broad-
tuned (immature) neurons and 
narrow tuned (mature) neurons 
confirms predicted ability to encode 
novel information

28

William Severa, NICE 2016
Severa et al., Neural Computation, 2017



Classic model of CA3 uses Hopfield-like 
recurrent network attractors

Problems
 “Auto-associative” attractors make more 

sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

29

Deng, Aimone, Gage, Nat Rev Neuro 2010



Moving away from the Hopfield 
“learned auto-association” function for CA3

Hopfield dynamics are 
discrete state transitions

time

Hillar and Tran, 2014



Spiking dynamics are inconsistent with fixed 
point attractors in associative models

Biology uses sequence of spiking neurons?Hopfield dynamics are 
discrete state transitions

time time



Spiking dynamics are inconsistent with fixed 
point attractors in associative models

time time

One can see how sequences can replace fixed populations



Path attractors, such as orbits, are consistent 
with spiking dynamics



A new dynamical model of CA3

Problems
 “Auto-associative” attractors make more 

sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

34

Orbits of 
Spiking Neurons



Neuromodulation can shift dynamics of 
recurrent networks

35

Carlson, Warrender, Severa and Aimone; in preparation



Cortex and subcortical inputs can modulate 
CA3 attractor access

 Modulation can be provided 
mechanistically by several sources

 Spatial distribution of CA3 synaptic 
inputs suggests EC inputs could be 
considered modulatory

 Metabotrophic modulators (e.g., 
serotonin, acetylcholine) can bias 
neuronal timings and thresholds

 Attractor network can thus have 
many “memories”, but only fraction 
are accessible within each context



A new modulated, dynamical model of CA3

Problems
 “Auto-associative” attractors make more 

sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

37

Orbits of 
Spiking Neurons

Context 
modulation



CA1 encoding can integrate cortical 
input with transformed DG/CA3 input
 CA1 plasticity is dramatic

 Synapses appear to be structurally volatile
 Representations are temporally volatile
 Consistent with one-shot learning

 Can consider EC-CA1-EC loosely as an 
autoencoder, with DG / CA3 “guiding” 
what representation is used within CA1

38
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A new modulated, dynamical model of CA3

Problems
 “Auto-associative” attractors make more 

sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

39

Orbits of 
Spiking Neurons

Context 
modulation

Schaffer Collateral 
(CA3-CA1) Learning



Thanks!

HAANA Grand Challenge LDRD
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Computing Program

Neurogenesis Deep Learning:

Tim Draelos, Nadine Miner, Chris Lamb, 
Jonathan Cox, Craig Vineyard, Kris Carlson, 
William Severa, and Conrad James

Hippocampus Algorithm:

Kris Carlson, William Severa, Ojas Parekh, 
Frances Chance, and Craig Vineyard


	Hippocampus-inspired �Adaptive Neural Algorithms
	Can neural computing provide the �next Moore’s Law?
	Moore’s Law was based on scientific discovery and successive innovations
	Each successive advance made more computing feasible
	Better devices made better computers, which allowed engineering new devices…
	Better devices made better computers, which allowed engineering new devices…
	If we extrapolate capabilities out, it is not obvious better devices is the answer…
	Cycle of computing scaling already has begun to influence neuroscience
	Even if Moore’s Law ends, computing will continue to scale to be smarter
	The reservoir of known neuroscience untapped for computing inspiration is enormous
	The brain has many mechanisms for adaptation; which are important for computing?
	There are different algorithmic approaches to neural learning
	Slide Number 13
	Deep Networks are a function of training sets
	Deep Networks are a function of training sets
	Deep networks often struggle to generalize outside of training domain
	Neurogenesis can be used to capture new information without disrupting old information
	Neurogenesis can be used to capture new information without disrupting old information
	Neurogenesis can be used to capture new information without disrupting old information
	Neurogenesis can be used to capture new information without disrupting old information
	Neurogenesis can be used to capture new information without disrupting old information
	Neurogenesis algorithm effectively �balances stability and plasticity
	Neurogenesis algorithm effectively �balances stability and plasticity
	NDL applied to NIST data set 
	Slide Number 25
	Deep learning ≈ Cortex �What ≈ Hippocampus?
	Can a new framework for studying the hippocampus help inspire computing?
	Formal model of DG provides �lossless encoding of cortical inputs
	Classic model of CA3 uses Hopfield-like recurrent network attractors
	Moving away from the Hopfield �“learned auto-association” function for CA3
	Spiking dynamics are inconsistent with fixed point attractors in associative models
	Spiking dynamics are inconsistent with fixed point attractors in associative models
	Path attractors, such as orbits, are consistent with spiking dynamics
	A new dynamical model of CA3
	Neuromodulation can shift dynamics of recurrent networks
	Cortex and subcortical inputs can modulate CA3 attractor access
	A new modulated, dynamical model of CA3
	CA1 encoding can integrate cortical input with transformed DG/CA3 input
	A new modulated, dynamical model of CA3
	Slide Number 40

